Stereospecific proton transfer by a mobile catalyst in mammalian fructose-1,6-bisphosphate aldolase.

نویسندگان

  • Miguel St-Jean
  • Jurgen Sygusch
چکیده

Class I fructose-1,6-bisphosphate aldolases catalyze the interconversion between the enamine and iminium covalent enzymatic intermediates by stereospecific exchange of the pro(S) proton of the dihydroxyacetone-phosphate C3 carbon, an obligatory reaction step during substrate cleavage. To investigate the mechanism of stereospecific proton exchange, high resolution crystal structures of native and a mutant Lys(146) --> Met aldolase were solved in complex with dihydroxyacetone phosphate. The structural analysis revealed trapping of the enamine intermediate at Lys(229) in native aldolase. Mutation of conserved active site residue Lys(146) to Met drastically decreased activity and enabled trapping of the putative iminium intermediate in the crystal structure showing active site attachment by C-terminal residues 360-363. Attachment positions the conserved C-terminal Tyr(363) hydroxyl within 2.9A of the C3 carbon in the iminium in an orientation consistent with incipient re face proton transfer. We propose a catalytic mechanism by which the mobile C-terminal Tyr(363) is activated by the iminium phosphate via a structurally conserved water molecule to yield a transient phenate, whose developing negative charge is stabilized by a Lys(146) positive charge, and which abstracts the C3 pro(S) proton forming the enamine. An identical C-terminal binding mode observed in the presence of phosphate in the native structure corroborates Tyr(363) interaction with Lys(146) and is consistent with transient C terminus binding in the enamine. The absence of charge stabilization and of a mobile C-terminal catalyst explains the extraordinary stability of enamine intermediates in transaldolases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure of a class I tagatose-1,6-bisphosphate aldolase: investigation into an apparent loss of stereospecificity.

Tagatose-1,6-bisphosphate aldolase from Streptococcus pyogenes is a class I aldolase that exhibits a remarkable lack of chiral discrimination with respect to the configuration of hydroxyl groups at both C3 and C4 positions. The enzyme catalyzes the reversible cleavage of four diastereoisomers (fructose 1,6-bisphosphate (FBP), psicose 1,6-bisphosphate, sorbose 1,6-bisphosphate, and tagatose 1,6-...

متن کامل

A conserved glutamate residue exhibits multifunctional catalytic roles in D-fructose-1,6-bisphosphate aldolases.

The aldolase catalytic cycle consists of a number of proton transfers that interconvert covalent enzyme intermediates. Glu-187 is a conserved amino acid that is located in the mammalian fructose-1,6-bisphosphate aldolase active site. Its central location, within hydrogen bonding distance of three other conserved active site residues: Lys-146, Glu-189, and Schiff base-forming Lys-229, makes it a...

متن کامل

Kinetic properties of D-fructose-1,6-bisphosphate 1-phosphohydrolase isolated from human muscle.

D-Fructose-1,6-bisphosphate 1-phosphohydrolase (EC 3.1.3.11) [Fru(1,6)Pase] was isolated from human muscle in an electrophoretically homogeneous form, free of aldolase contamination. The enzyme is inhibited by the substrate [fructose (1,6)-bisphosphate]. Km is 0.77 microM; Kis is 90 microM. The fructose-2,6-bisphosphate [Fru(2,6)P2], a regulator of gluconeogenesis, inhibits human muscle Fru(1,6...

متن کامل

Interaction of fructose 2,6-bisphosphate and AMP with fructose-1,6-bisphosphatase as studied by nuclear magnetic resonance spectroscopy.

The interaction of AMP and fructose 2,6-bisphosphate with rabbit liver fructose-1,6-bisphosphatase has been investigated by proton nuclear magnetic resonance spectroscopy (1H NMR). The temperature dependence of the line widths of the proton resonances of AMP as a function of fructose-1,6-bisphosphatase concentration indicates that the nucleotide C2 proton is in fast exchange on the NMR time sca...

متن کامل

Fructose 1,6-bisphosphate aldolase activity is essential for synthesis of alginate from glucose by Pseudomonas aeruginosa.

We have isolated a mutant of Pseudomonas aeruginosa deficient in fructose 1,6-bisphosphate aldolase activity. This mutant, similar to the mutants deficient in any of the Entner-Doudoroff pathway enzymes, does not allow appreciable alginate formation from glucose and gluconate, but allows alginate synthesis from mannitol and fructose. This suggests that glucose and gluconate must be converted to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 282 42  شماره 

صفحات  -

تاریخ انتشار 2007